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Abstract

Imagine living in a world composed solely of primitive shapes, could you still recog-
nise familiar objects? Recent studies have shown that abstract images—constructed by
primitive shapes—can indeed convey visual semantic information to deep learning mod-
els. However, representations obtained from such images often fall short compared to
those derived from traditional raster images. In this paper, we study the reasons be-
hind this performance gap and investigate how much high-level semantic content can
be captured at different abstraction levels. To this end, we introduce the Hierarchical
Abstraction Image Dataset (HAID), a novel data collection that comprises abstract im-
ages generated from normal raster images at multiple levels of abstraction. We then train
and evaluate conventional vision systems on HAID across various tasks including clas-
sification, segmentation, and object detection, providing a comprehensive study between
rasterised and abstract image representations. We also discuss if the abstract image can
be considered as a potentially effective format for conveying visual semantic informa-
tion and contributing to vision tasks. Project page: https://fronik-1lihaotian.
github.io/HAID_page/.

“Art is the elimination of the unnecessary.”

— Pablo Picasso

1 Introduction

Visual components, such as primitive shapes, are vital for humans to recognise and remem-
ber objects. Infants can classify objects based on their shapes [1, 21, 22], and such shape
cues can be quickly and efficiently extracted by the human brain [7]. As for computer vi-
sion, abstract images are generally considered as the carrier to present the shape-oriented
visual information. They are typically formed by vectorised shapes to provide lossless scal-
ability and are widely used in many scenarios due to this special property. Although shape
information plays a crucial role in human visual recognition patterns, early machine learning
visual tasks did not focus too much on abstract images. Nevertheless, with the rapid devel-
opment of computer vision, the potential contributions of such abstract images to machine
learning systems are gradually being recognised. Remarkable progress related to vectorised
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Figure 1: An overview of samples in the introduced HAID dataset and corresponding images
from the raster image datasets. HAID-MinilmageNet supports the abstract level up to 1,000
shapes, HAID-Caltech-256 and HAID-CIFAR-10 support the abstract level up to 100 shapes.

image generation and understanding has been achieved, for example, DeepSVG [4] success-
fully generated the transition animation between two Scalable Vector Graphics (SVG) icons,
SVGformer [3] further improved the performance and supported up to four different down-
stream tasks, recently, StarVector [26] presented the first large-scale pretraining dataset and
the Multi-modal Large Language Model (MLLM) for SVG generation.

However, despite such great achievements, the studies related to abstract images gen-
erally stay on the high-abstract level and rarely consider the correlations with the complex
visual semantic information from the real world. In the work of [2], the authors try to lever-
age the powerful understanding abilities of the Large Language Model (LLM) to ‘see’ and
‘draw’ the vectorised images, but there is still a significant performance gap compared with
the vision experts trained on pixel-level images. Another work [30] also tried to use LLM
to understand and generate code-based abstract images, then use the generated images to
train the vision model and evaluate based on the real images. The result shows that LLM
can understand and generate visual concepts from code-based images, yet it will fail when
encountering images containing complex semantic information, and the contribution from
generated images to vision systems is still limited.

We are interested in the reason behind such performance gap. Following conclusions
from some works [2, 30], we speculate that the difficulty of demonstrating the complex and
fine-grained features from abstract images might be the major reason. In existing vector
graphics image datasets [4, 16, 26, 34], most of them consist of simple and single-object
icons or fonts. However, raster images generally have complex scenes with multiple ob-
jects. In the work of [2], they tried to provide SVG images directly converted from rasterised
images, but some fine-grained features, textural features, for example, still failed to be pre-
sented. Motivated by this, we are interested in asking: 1) Is the level of abstraction a major
reason for the performance gap between representations learned from raster and abstract
images? 2) To what extent do changes in fine-grained features of abstract images affect the
visual recognition of semantics?

To answer these questions, we introduce a dataset called Hierarchical Abstraction Image
Dataset (HAID) containing various abstract levels of SVG images. The dataset is generated
directly from raster image datasets [10, 14, 32] using the Primitive tool [9]. Then, we use im-
ages with different levels of abstraction to train and evaluate models for classification, object
detection, and segmentation tasks. Finally, we discuss whether the difficulty of presenting
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Figure 2: Sample from MinilmageNet (original rasterised image) and HAID-MinilmageNet
(abstract images from different abstract levels ranging from 10 to 1,000 shapes).

fine-grained features is a major reason leading to such a performance gap and whether the
abstract images generated by primitive shapes could contribute to the vision tasks. To sum-
marise, the main contributions of this study include:
* We introduce a new dataset — HAID that comprises the different abstract levels of
vectorised images generated from raster images.
* A comprehensive study is presented on how the abstract level of images affects the
ability of conventional vision systems to capture visual semantic information.
* We investigate how much the abstract image representations from different abstract
levels contribute to downstream tasks.
* We further discuss the potential benefits of abstract images to contribute to the vision
tasks as well as the limitations

2 Related Works

Abstract images. Abstract images, commonly rendered using vector graphics formats
such as SVG [23] and TikZ [19], have found widespread use in numerous domains due
to their unique properties. Distinct from raster images, vector graphics offer lossless and
infinite scalability, moreover, they are text-based, which facilitates both generation and sub-
sequent editing. Scalable Vector Graphics (SVG) image, an XML-based format, is primarily
considered in this study due to its convenience of third-party support and demonstration.
Although abstract images enjoy certain advantages, their use mostly remains in presenting
simple abstract information or logical relationships instead of fine features as high-resolution
rasterised images.

Representation learning of vector graphics and datasets. The previous deep learning
studies on vector graphics and their datasets generally focused on the generation task [3, 4,
12, 16, 24, 26, 34], the early seminal works like SVG-VAE [16] and DeepSVG [4], pioneered
the ways of generating SVG images, and built the datasets that contained SVG fonts and
icons. Subsequent studies further advanced these methods to improve performance as well
as to broaden the scope of tasks related to vectorised images. For instance, by distilling
from the powerful diffusion models, VectorFusion [12] is capable of directly generating
SVG images from text instructions. Further, VGbench [34] leverages the Large Language
Model (LLM) to endow the model with both visual understanding and generating abilities
for vector graphics. The datasets for both works are formed as image-text pairs collected
from past works or the Internet. Very recently, StarVector [26] presented a foundation model
for SVG generation as well as a new large-scale dataset. However, the datasets above are
mostly built for the universal utilisation of vectorised graphics, and their images are often
single-object and high-abstract which is disconnected from reality.
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With the remarkable progress achieved by LLMs, some studies try to utilise the textual
property of vector graphics to endow the visual understanding ability to the LLM. Work [2]
treats the SVG images as the bridge between image-text and enables the LLM in a variety
of visual semantic understanding tasks. Moreover, the work [30] tries to use code-based
images to reveal whether the LLM can ‘see’ and ‘draw’. Further, they use the code-based
images drawn by LLM to train the vision system, which eventually demonstrates the ability
to understand high-level visual semantic information from raster images. Despite all these
studies exhibiting that abstract images can provide the visual semantic information for repre-
sentation learning, a distinct performance gap persists between representations derived from
pixel-level images and those obtained from abstract, code-based images.

Primitive. Primitive [9] is a tool to generate abstract images from raster images. Different
from VTracer [31] or Potrace [28], Primitive iteratively adds primitive shapes to a canvas
to approximate the original raster image. Specifically, the algorithm randomly generates
candidate primitive shapes at each iteration and then uses a hill-climb-based algorithm to re-
peatedly mutate these shapes, choosing the one with the best score evaluated by Root Mean
Square Error (RMSE) as the target shape to be added to the canvas. The number of itera-
tions is equivalent to the target number of shapes of abstract images. Due to the file capacity
concern, Primitive is considered rather than VTracer. Potrace is excluded from considera-
tion because it supports only binarised inputs (e.g. black-and-white bitmaps), which do not
meet our requirement for generating images from full-colour pixel inputs. The comparison
between Primitive and VTracer is shown in section S1.3, and details of how the Primitive
generates the shape-based images are shown in fig. S6 of the supplementary material. As
Primitive can set different numbers and types of SVG primitive shapes to generate the target
images, it is particularly well-suited in this project for simulating different abstraction levels
in vectorised images. The effect of Primitive can be viewed in fig. 2.

3 Dataset

To better discuss the questions mentioned above, here we introduce a new dataset: Hierarchical
Abstraction Image Dataset (HAID), which comprises SVG images generated at multiple lev-
els of abstraction from existing raster-image datasets, using the Primitive tool [9]. Specif-
ically, the number of shapes determines the fine-grained level of the SVG images; as the
number of shapes increases, the depicted objects as well as fine-grained details become in-
creasingly recognisable from human perception (see fig. 2). The dataset offers two primary
advantages: (1) a one-to-one correspondence between the SVG image and their raster image
counterparts, and (2) multiple abstraction levels for each raster image. We analyse the dif-
ferences between representations learned from pixel-level images and corresponding SVG
images on three standard computer vision tasks: image classification, semantic segmenta-
tion, and object detection. For convenience, we term the HAID subset corresponding to a
specific raster-image dataset as HAID-(name of the dataset), e.g. HAID-MinilmageNet.

3.1 C(lassification

To obtain representations of code-based images and compare them with those derived from
raster images, we generate SVG images from three open-source datasets. In this study,
we primarily consider three datasets: MinilmageNet [32], Caltech-256 [10], and CIFAR-10
[14]. An overview of the sample images generated from three datasets is shown in fig. 1.
HAID-MinilmageNet is generated from MinilmageNet [32] using Primitive [9] with var-
ious numbers of shapes to simulate different levels of abstraction, ranging from 10 to 1,000
shapes (more details about the level split please refer to the section S1.2 of supplementary
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material). For each abstract level, similar to MinilmageNet, HAID-MinilmageNet contains
60,000 images across 100 categories. Sample SVG images are presented in fig. 2. The two
datasets are divided into training, validation, and testing sets in an 8:1:1 ratio in the same
way. We select two options to generate the images by Primitive, using all types of shapes
(mode 0) and using triangle shapes (mode 1). The reason we additionally generate the im-
ages constructed by triangles only is that this type of image shows the lowest capacity, which
could be a potentially efficient form of abstract images.

HAID-Caltech-256 is generated from Caltech-256 [10] to support the classification task.
The abstract levels of HAID-Caltech-256 range from 10 to 100 shapes. Both the original and
abstract datasets are partitioned into training and validation sets using a 9:1 ratio.

To comprehensively investigate the effect of image complexity, HAID-CIFAR-10, which
is generated from CIFAR-10 [14] and characterised by comparatively simple images, is in-
cluded, with the abstract levels similarly set between 10 and 100 shapes. The dataset splitting
follows the official strategy.

3.2 Object detection & segmentation

We further investigate whether the representations can contribute to other vision downstream
tasks e.g. semantic segmentation and object detection. Pascal VOC 2012 [8] is used for
these tasks. Following the official data split, the segmentation task utilises 1,464 images
for training and 1,449 images for validation, while the object detection task utilises 5,717
training images and 5,823 validation images.

4 Study on Abstract Images and Learned Representation

To comprehensively explore the issues out-  ymaP visualization of Image Features using DINO v2
lined in the section 1, we first employ a

. . 8
third-party pretrained model to compare the
difference between abstract and raster im-
ages, then, we evaluate model performance
on HAID across three tasks: image clas-

. . . . 10 shapes
sification, semantic segmentation, and ob- 30 shapes

ject detection. In the classification task, ,| ® S50shapes

. . .. - ® 100 shapes
we investigate whether traditional vision ar- ® 500 shapes

. . . 1000 shapes .
chitectures can capture high-level semantic o{ 5 Rraster H
information from abstract images and how 0 2 4 6 8

performance varies across different levels Figure 3: Visualisation of the difference
of abstraction. Subsequently, we employ across the abstract images and raster images
the representations learned from the classi- in the embedding space by DINO v2.

fication task as backbones and fine-tune the models for downstream tasks, assessing their
contribution to enhanced performance in segmentation and object detection tasks.

4.1 Difference across the abstract levels

First, we investigate how many differences there are between abstract levels in the perspec-
tive of deep learning representations. We randomly sampled 4,000 image pairs—each con-
sisting of an original MinilmageNet raster image and its corresponding abstract SVG ver-
sions across all abstract levels. We encoded these images using the DINO v2 [20] and ap-
plied UMAP [18] to project the resulting embeddings into two dimensions for visualisation,
as shown in fig. 3. From the visualisation results, embeddings of highly abstract images (e.g.
10 or 30 shapes) form clusters that lie far from the raster-image cluster, indicating substantial
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representational differences at coarse abstraction. As the number of primitives increases, the
abstract-image clusters move steadily closer to the raster-image cluster, demonstrating that
higher-shape-count abstractions maintain higher fidelity of semantics than lower ones. By
the 500-1,000 shape levels, abstract embeddings overlap significantly with raster embed-
dings, suggesting near-parity in semantic content despite the vectorised input format.

This trend confirms our intuition: coarse abstractions omit fine details and are thus
distinct from pixel-based representations, however, increasing the granularity of primitive
shapes progressively bridges the gap. Consequently, the “distance” in embedding space rep-
resents the semantic fidelity of abstracted images relative to their raster counterparts.

4.2 How significant are fine-grained features?

Building on the previous visualisation, we next investigate how increasing abstraction—and
the corresponding loss of fine-grained details—impacts visual representation learning. To
provide extensive studies of these issues, we decompose the problems into two sub-questions:
1) What is the performance of representation learning, and how does it compare to that
achieved using raster images? 2) Will the performance be more comparable based on the
low-resolution raster images that are difficult to display the fine-grained features? To an-
swer these questions, we design a series of classification tasks to provide a comprehen-
sive discussion. We primarily consider two conventional vision systems, ResNet50 [11]
and MobileNetv2 [27], to extract the semantic features. Our experiments utilise HAID-
MinilmageNet, HAID-Caltech-256, and HAID-CIFAR-10, alongside their corresponding
raster datasets, to enable a full comparison. All experiments are implemented in PyTorch
and executed on an NVIDIA A100 40GB GPU.

Comparing with raster images, how good can it be? We discuss the difference between
representations derived from raster images and those obtained from abstract images in this
part. First, we establish baseline performance by training ResNet50 and MobileNetv2 on the
original MinilmageNet dataset. Next, we train the models with the same architectures on the
HAID-MinilmageNet dataset across six abstraction levels (10, 30, 50, 100, 500, and 1,000
shapes) and assess the performance on test sets corresponding to each level. Additionally,
to examine the effect of training data volume on representation quality, we randomly select
four subsets containing fewer training samples from the training set of HAID-MinilmageNet,
ranging from 20% to 80% of the full training set.

For the training recipe, since we try to evaluate the difference between raster and abstract
images rather than explore the best performance, simple hyperparameter settings are applied
in our experiments. We use AdamW [17] as the optimiser with the initial learning rate of
0.0001, and set batch size to 256. We also considered the data augmentations for training
(more details are in section S2.1 of supplementary material). The training recipe is shared
across all the experiments in this section. The final results are presented in the fig. 4, and the
specific results are shown in tables S1 and S2 of the supplementary material.

Our results indicate that as the level of fine-grained detail in the abstract images increases,
the learned representations are better able to understand high-level semantic information,
with performance gradually approaching that of the raster image baseline. In particular,
SVG images generated with 500 and 1,000 shapes yield representations that are highly com-
parable to those derived from raster images. Conversely, at high abstraction levels (e.g. 10
and 30 shapes), a pronounced performance gap is observed, which is expected given the in-
herent difficulty in recognising highly abstracted images even for humans. Additionally, our
scaling experiments reveal that increasing the number of training samples further enhances
the performance of the learned representations.
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Comparison between different abstract and scaling levels (ResNet50) Comparison between different abstract and scaling levels (MobileNetv2)
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Figure 4: Comparison between representations learned from MinilmageNet and HAID-
MinilmageNet across abstract levels (10—1,000 shapes) and scaling factors (20%—100%).
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Figure 5: Comparison between representations learned from Caltech-256 and HAID-
Caltech-256 across various abstract levels (10-100 shapes) and scaling factors (20%—100%).

We also evaluate the representation performance on another dataset to support our per-
spective. Similar to the experiments on HAID-MinilmageNet, we train ResNet50 and Mo-
bileNetv2 on the HAID-Caltech-256 across four abstraction levels (10, 30, 50, and 100
shapes). The baseline is built by training on the raster images of Caltech-256. The rest
settings remain the same with the experiments on HAID-MinilmageNet. The results on
HAID-Caltech-256 and Caltech-256, which are shown in fig. 5, follow the trend of the re-
sults from HAID-MinilmageNet, demonstrating once again that the representations can bet-
ter understand high-level semantics on images with low abstractions.

We also measured the difference between the abstractions with two different generation
modes (abstractions with all types of shapes and triangles only). However, very slight dif-
ferences are observed between them compared with the differences from abstract levels. So,
the discussion regarding this part is narrated in section S2.2 of the supplementary material.

Recognising small images. Table 1: Accuracy on CIFAR-10 and HAID-CIFAR-10.
To further investigate whether  Abstract level | 10 30 50 100 | Raster

the difficulty in demonstrat- " A e 60.01% 67.02% 68.48% 70.17% | 72.10%
ing fine-grained details is the

primary factor influencing performance, we employ the CIFAR-10 dataset [14], which con-
tains low-resolution images that are also difficult to present visual details. A four-layer
convolutional neural network is used to extract features from the images. The network is
trained from scratch on HAID-CIFAR-10 at various abstraction levels for 10 epochs (more
training details are in the supplementary material), and the top-1 classification accuracy of
the resulting representations is evaluated. The results are summarised in table 1.
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Notably, although a small performance gap remains, the performance gap within highly
abstracted levels area between raster images and abstract images is significantly reduced.
Combined with previous experimental results, this observation suggests that the inability to
capture fine-grained details is a major factor contributing to the performance gap between
representations derived from raster images and those obtained from code-based images.

4.3 Can the representations further contribute the downstream tasks?
We further investigated how much these representations can contribute to downstream tasks

Comparing of segmentation results (ResNet50) 4 Comparing of segmentation results (MobileNetv2)
50 i o7 2054 4063
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Figure 6: Semantic Segmentation results of DeepLabv3 with backbones and two baselines,
upper bound refers to the model initialised with backbone pretrained on MinilmageNet,
lower bound refers to the model with random initialisation.

Comparing of Object Detection results (ResNet50) Comparing of Object Detection results (MobileNetv2)
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Figure 7: Object Detection results of Faster R-CNN and SSD-Lite with backbones and two
baselines. The upper bound refers to the model initialised with a backbone pretrained on
MinilmageNet, and the lower bound refers to the model with random initialisation.

Semantic segmentation. To evaluate if the abstract image representations can contribute
to the downstream task of semantic segmentation, we utilise backbones derived from models
trained on both MinilmageNet and HAID-MinilmageNet (see section 4.2). DeepLabv3 [5]
is considered the framework for the segmentation tasks. For comprehensively measuring the
contributions, we also set two performance baselines, one using the backbone pretrained on
MinilmageNet, and another without any initialisation from pretrained backbone.

The models are trained using the AdamW optimiser with an initial learning rate of
0.0009, batch size of 8, for 200 epochs. We compared the results of DeepLabv3 models
with both ResNet50 and MobileNetv2 backbones in fig. 6. The numerical differences be-
tween different model performances and upper and lower bounds are presented in table S3.

From the results, initialising the network weights from pretrained abstract backbones
shows an increasing performance trend as the descending of abstraction level. Notably, re-
gardless of the specific abstraction level employed, the contributions of these representations
are evident, demonstrating that such representations can further contribute to segmentation
tasks, even if such tasks strongly rely on fine-grained features capturing ability.

Object detection. After evaluating the results from the downstream task, which challenges
the pixel-level visual understanding, we then discuss how abstract image representation con-
tributes to the spatial visual understanding in the object detection task. Two architectures:
SSD-Lite [27] and Faster R-CNN [25] are considered. For SSD-Lite—a lighter variant of
SSD [15]—we initialised the weights from MobileNetv2 backbones. The model was trained
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using the stochastic gradient descent (SGD) optimiser with an initial learning rate of 0.001
and a weight decay of 0.0005 for 120 epochs. In addition, we used Faster R-CNN with a
ResNet50 backbone for object detection. This model was trained for 20 epochs using the
SGD optimiser with an initial learning rate of 0.005 and a weight decay of 0.0005. The
detail setting refers to section S2.1 of supplementary material. Figure 7 compares the differ-
ence between the model initialised by the abstract image backbone and two baselines. The
specific numerical differences are shown in table S4 of the supplementary material.

The results from object detection demonstrate the same trend as the results from seman-
tic segmentation. Moreover, the performance for some models initialised by representations
from abstract images surprisingly exceeds the performance from the raster image represen-
tation. From the Grad-CAM [29] visualisation of Faster R-CNN initialised by different
backbones, we found an interesting phenomenon, that the attention map from the model
with abstract prior concentrated more on core semantic area of the objects. Such effect is
most pronounced at 100 shapes, but as the number of shapes further increases, this effect
gradually disappears and approaches the model with raster prior (details are shown in sec-
tion S2.2 of supplementary material). These results once again exhibit that representations
obtained from abstract images can contribute to downstream tasks, and more than that, com-
pared with the results from previous segmentation tasks, we can observe that tasks relying on
spatial perception, such as object detection, seem to better reflect the advantages of abstract
image representation compared to tasks that rely more on fine-grained features.

4.4 How human perceive abstract images?

To further evaluate our dataset from a human perception perspective, we conducted a user
study to quantify how confidently humans perceive object identity in HAID abstractions.
The images with only 10-shape abstract level were excluded, as they are almost certainly
unrecognisable. We chose 36 images from HAID-MinilmageNet and MinilmageNet at six
levels (30, 50, 100, 500, 1,000 shapes, and original images). Participants are asked to provide
a 1-5 rating for each image to indicate how confident they are in recognising the object(s)
within it. Detailed design of the user study is explained in section S2.2 of supplementary
material.

All-samples Mean Opinion Score (MOS) by Abstraction Level Easy vs. Hard samples Mean Opinion Score (MOS) comparison
4.96 5 5
4.78

4.60

8 8
2.44
= =

=e== Easy samples
Hard samples

30 50 100 500 1,000 Original‘images 30 50 100 500 1,000 Original images
Abstraction Level (number of shapes) Abstraction Level (number of shapes)

Figure 8: Left chart demonstrates the MOS across the different abstract levels as well as

original images; the right chart compares the differences between ‘hard’ and ‘easy’ samples.

We received responses from 12 participants in total and collected their Mean Opinion
Score (MOS) of each abstraction level to produce three summary series: MOS for easy
samples, hard samples (according to the complexity, more details in the supplementary ma-
terial), and MOS for all samples. The results are presented in fig. 8 (comprehensive results
in section S2.2 of supplementary material). We can see that MOS for all samples increases
monotonically with the number of primitives. Easy samples show higher confidence scores
at low shape counts (e.g. 2.22 vs. 1.81 at 30 shapes), while hard samples require substan-
tially more primitives before the score approaches that of the originals (notably the dip at 50
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shapes for hard samples).

Some observations are derived from the above analysis: 1) HAID abstractions retain
perceptually relevant structure: at moderate-to-high fidelity (500 and 1,000 primitives), ob-
servers report confidence of perception close to original images. 2) Harder samples require
more primitives to reach comparable perceptual clarity, suggesting adaptive allocation of
abstraction budget may benefit recognition tasks that require fine-grained discrimination.

4.5 Potential benefits of abstract images

In this section, we discuss whether the abstract images can be a potentially effective for-
mat to contribute to the vision tasks, as well as their limitations. As the previous results
demonstrated, representations learned from sufficiently detailed abstract images (e.g. those
generated with 500 and 1,000 shapes) approach—and in some object-detection scenarios
even exceed—the performance of raster-trained representations. Considering the pixel-level
images take advantage of using CNN-based models, which are designed for the rasterised
images, not abstract images, such results are very promising to further explore how the ab-
stract images can contribute to the vision tasks.

However, two key limitations remained. First, highly abstract images (fewer than 100
shapes) lack critical fine-grained features—such as texture, small edges, or subtle shad-
ing—that raster data naturally provides. As a result, performance gaps persist in tasks heavily
dependent on such details (e.g. semantic segmentation). Second, in this study, we use Prim-
itive to generate the abstract images that approximate the original raster images. Despite the
resulting images being visually appealing, the redundant shapes may be introduced during
the generation process, which leads to unnecessary code fields and increases the capacity of
the file. In section S2.3 of supplementary material, we observe a strong correlation between
perceptual similarity and image entropy, which shows that under the same abstract level, im-
ages enjoying low entropy generally have better perceptual loss on related abstract images, in
other words, entropy can be considered as the metric to provide the trade-off between capac-
ity and performance to further improve the efficiency. Moreover, considering that abstract
images enjoy code-based format, the keywords of the SVG code can be further compressed
and thus benefiting data transmission.

5 Conclusion

In this paper, we investigated abstract images and performed a study on the representations
learned from them. Experiments showed that fine-grained detail is one of the main fac-
tors leading to the performance gap between representations learned from raster images and
those learned from abstract images. On the other hand, as the level of fine-grain increases,
the capacity of representation to capture high-level semantic information improves, thereby
narrowing such performance differences. Moreover, our downstream task experiments re-
vealed that representations derived from abstract images can effectively contribute to visual
tasks, even achieving comparable performance on tasks that are less reliant on fine-grained
details. From the analysis we found that models initialised from backbones pretrained on
abstract images show stronger feature attention to object geometry and contours, yielding
improved bounding-box localisation in Faster R-CNN, with peak gains at moderate abstrac-
tion (100 shapes). Given the inherent advantages- including lossless scalability, a compact
textual format, and ease of editing the abstract images show significant promise as a novel
data form for visual representation learning and related vision tasks.
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